A physically based approach for the estimation of root-zone soil moisture from surface measurements: application on the AMMA database
نویسندگان
چکیده
In the present work, we present a new formulation for the estimation of the soil moisture in the root zone based on the measured value of soil moisture at the surface. The method sheds lights on the relationship between surface and root zone soil moisture. It derives from a simplified form of the soil water balance equation and provides a closed form of the relationship between the root zone and the surface soil moisture with a limited number of physically consistent parameters. The approach was used to interpret soil moisture dynamics at the point scale using soil moisture measurements taken from the African Monsoon Multidisciplinary Analysis (AMMA) database. These soil moisture measurements form an excellent database that well describes the soil moisture along the root-zone profile. According to this, we have used the surface soil moisture measurements at 5 cm depth to predict the soil moisture in the lower layer of the soil where the relative saturation is measured at various depths. In general, the method performed better than a traditional low pass filter with the advantage that all parameters are physically consistent. 1 University of Basilicata, Italy. 2 National Research Council, Italy.
منابع مشابه
Modeling and assimilation of root zone soil moisture using remote sensing observations in Walnut Gulch Watershed during SMEX04
Soil moisture status in the root zone is an important component of the water cycle at all spatial scales (e.g., point, field, catchment, watershed, and region). In this study, the spatio-temporal evolution of root zone soil moisture of the Walnut Gulch Experimental Watershed (WGEW) in Arizona was investigated during the Soil Moisture Experiment 2004 (SMEX04). Root zone soil moisture was estimat...
متن کاملSurface runoff estimation in an upper watershed using geo-spatial based soil conservation service-curve number method
Runoff assessment and estimation is crucial for watershed management as it provides information that is needed to expedite the course of watershed planning and development. The most commonly used model due to its simplicity and versatility in runoff estimation is the soil conservation service curve number developed by the United States Department of Agriculture. The study estimates the surface ...
متن کاملMonitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model
Two types of Soil Vegetation Atmosphere Transfer (SVAT) modeling approaches can be applied to monitor root-zone soil moisture in agricultural landscapes. Water and Energy Balance (WEB) SVAT modeling is based on forcing a prognostic root-zone water balance model with observed rainfall and predicted evapotranspiration. In contrast, thermal Remote Sensing (RS) observations of surface radiometric t...
متن کاملRoot Zone Soil Moisture Assessment Using Remote Sensing and Vadose Zone Modeling
Soil moisture is an important hydrologic state variable critical to successful hydroclimatic and environmental predictions. Soil moisture varies both in space and time because of spatio-temporal variations in precipitation, soil properties, topographic features, and vegetation characteristics. In recent years, airand space-borne remote sensing campaigns have successfully demonstrated the use of...
متن کاملTowards the estimation root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals
The upcoming deployment of satellite-based microwave sensors designed specifically to retrieve surface soil moisture represents an important milestone in efforts to develop hydrologic applications for remote sensing observations. However, typical measurement depths of microwave-based soil moisture retrievals are generally considered too shallow (top 2–5 cm of the soil column) for many important...
متن کامل